Extensions 1→N→G→Q→1 with N=C2 and Q=C2×D52

Direct product G=N×Q with N=C2 and Q=C2×D52
dρLabelID
C22×D5240C2^2xD5^2400,218


Non-split extensions G=N.Q with N=C2 and Q=C2×D52
extensionφ:Q→Aut NdρLabelID
C2.1(C2×D52) = C4×D52central extension (φ=1)404C2.1(C2xD5^2)400,169
C2.2(C2×D52) = C2×D5×Dic5central extension (φ=1)80C2.2(C2xD5^2)400,172
C2.3(C2×D52) = C2×Dic52D5central extension (φ=1)40C2.3(C2xD5^2)400,175
C2.4(C2×D52) = D5×Dic10central stem extension (φ=1)804-C2.4(C2xD5^2)400,163
C2.5(C2×D52) = D205D5central stem extension (φ=1)804-C2.5(C2xD5^2)400,164
C2.6(C2×D52) = D20⋊D5central stem extension (φ=1)404C2.6(C2xD5^2)400,165
C2.7(C2×D52) = Dic10⋊D5central stem extension (φ=1)404C2.7(C2xD5^2)400,166
C2.8(C2×D52) = D10.9D10central stem extension (φ=1)404C2.8(C2xD5^2)400,167
C2.9(C2×D52) = Dic105D5central stem extension (φ=1)404+C2.9(C2xD5^2)400,168
C2.10(C2×D52) = D5×D20central stem extension (φ=1)404+C2.10(C2xD5^2)400,170
C2.11(C2×D52) = C20⋊D10central stem extension (φ=1)404C2.11(C2xD5^2)400,171
C2.12(C2×D52) = Dic5.D10central stem extension (φ=1)404C2.12(C2xD5^2)400,173
C2.13(C2×D52) = D10.4D10central stem extension (φ=1)404-C2.13(C2xD5^2)400,174
C2.14(C2×D52) = C2×C522D4central stem extension (φ=1)80C2.14(C2xD5^2)400,176
C2.15(C2×D52) = C2×C5⋊D20central stem extension (φ=1)40C2.15(C2xD5^2)400,177
C2.16(C2×D52) = C2×C522Q8central stem extension (φ=1)80C2.16(C2xD5^2)400,178
C2.17(C2×D52) = D5×C5⋊D4central stem extension (φ=1)404C2.17(C2xD5^2)400,179
C2.18(C2×D52) = D10⋊D10central stem extension (φ=1)204+C2.18(C2xD5^2)400,180

׿
×
𝔽